Abstract

Discrete quantum walk is one of the de facto models of quantum computation and as an efficient tool to develop quantum search algorithms. Although the theoretical model of quantum walks is straightforward, there are many complex scenarios such as coherence decay and/or decoherence in the implementations. It is hard to test experimentally if quantum walk works, or it just decays into a version of classic random walk. We propose a quantum central limit theorem (QCLT) for discrete quantum walks and conduct the statistical hypothesis testing for the standard or decayed walker probability distribution for imperfect quantum walks based on the QCLT. A reliable statistical analysis result is obtained for the imperfect distribution by the experimental quantum walk study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.