Abstract

We report an experiment with neutrons in a silicon perfect crystal interferometer, that realizes a quantum Cheshire Cat in a delayed choice setting. In our setup the quantum Cheshire Cat is established by spatially separating the particle and its property (i.e. the neutron and its spin) into the two different paths of the interferometer. The condition for a delayed choice setting is achieved by postponing the choice of path assignment for the quantum Cheshire Cat, i.e. which path is taken by the particle and which by its property, until the point in time when the neutron wave function has already split and entered the interferometer. The results of the experiment suggest not only the fact that the neutrons and its spin are separated and take different paths in the interferometer, but also quantum-mechanical causality is implied, insomuch that the behavior of a quantum system is affected by the choice of the selection at a later point in time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.