Abstract

For any semiconductor lasers, the wall plug efficiency, that is, the portion of the injected electrical energy that can be converted into output optical energy, is one of the most important figures of merit. A device with a higher wall plug efficiency has a lower power demand and prolonged device lifetime due to its reduced self-heating. Since its invention, the power performance of the quantum cascade laser1 has improved tremendously2,3,4,5,6,7. However, although the internal quantum efficiency7,8 can be engineered to be greater than 80% at low temperatures, the wall plug efficiency of a quantum cascade laser has never been demonstrated above 50% at any temperature. The best wall plug efficiency reported to date is 36% at 120 K (ref. 9). Here, we overcome the limiting factors using a single-well injector design and demonstrate 53% wall plug efficiency at 40 K with an emitting wavelength of 5 µm. In other words, we demonstrate a quantum cascade laser that produces more light than heat. A mid-infrared quantum cascade laser that emits more light than heat and features a high wall-plug efficiency of up to 53% when operated a temperature of 40 K is reported. The device utilizes a single-well injector design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call