Abstract
The spectroscopy of analyte-specific molecular vibrations in tissue thin sections has opened up a path toward histopathology without the need for tissue staining. However, biomedical vibrational imaging has not yet advanced from academic research to routine histopathology due to long acquisition times for the microscopic hyperspectral images and/or cost and availability of the necessary equipment. Here we show that the combination of a fast-tuning quantum cascade laser with a microbolometer array detector allows for a rapid image acquisition and bares the potential for substantial cost reduction. A 3.1 x 2.8 mm2 unstained thin section of mouse jejunum has been imaged in the 9.2 to 9.7 μm wavelength range (spectral resolution ~1 cm(-1)) within 5 min with diffraction limited spatial resolution. The comparison of this hyperspectral imaging approach with standard Fourier transform infrared imaging or mapping of the identical sample shows a reduction in acquisition time per wavenumber interval and image area by more than one or three orders of magnitude, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.