Abstract
We study the ground-state properties of a double layer graphene system with the Coulomb interlayer electron-electron interaction modeled within the random phase approximation. We first obtain an expression of the quantum capacitance of a two layer system. In addition, we calculate the many-body exchange-correlation energy and quantum capacitance of the hybrid double layer graphene system at zero-temperature. We show an enhancement of the majority density layer thermodynamic density-of-states owing to an increasing interlayer interaction between two layers near the Dirac point. The quantum capacitance near the neutrality point behaves like square root of the total density, $\alpha \sqrt{n}$, where the coefficient $\alpha$ decreases by increasing the charge density imbalance between two layers. Furthermore, we show that the quantum capacitance changes linearly by the gate voltage. Our results can be verified by current experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.