Abstract

Carbon monoxide is a simple molecule present in many astrophysical environments, and collisional excitation rate coefficients due to the dominant collision partners are necessary to accurately predict spectral line intensities and extract astrophysical parameters. We report new quantum scattering calculations for rotational deexcitation transitions of CO induced by H using the three-dimensional potential energy surface~(PES) of Song et al. (2015). State-to-state cross sections for collision energies from 10$^{-5}$ to 15,000~cm$^{-1}$ and rate coefficients for temperatures ranging from 1 to 3000~K are obtained for CO($v=0$, $j$) deexcitation from $j=1-45$ to all lower $j'$ levels, where $j$ is the rotational quantum number. Close-coupling and coupled-states calculations were performed in full-dimension for $j$=1-5, 10, 15, 20, 25, 30, 35, 40, and 45 while scaling approaches were used to estimate rate coefficients for all other intermediate rotational states. The current rate coefficients are compared with previous scattering results using earlier PESs. Astrophysical applications of the current results are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call