Abstract

Reaching agreement in the presence of arbitrary faults is a fundamental problem in distributed computation, which has been shown to be unsolvable if one-third of the processes can fail, unless signed messages are used. In this paper, we propose a solution to a variation of the original BA problem, called Detectable Byzantine Agreement (DBA), that does not need to use signed messages. The proposed algorithm uses what we call Q-correlated lists, which are generated by a quantum source device. Once each process has one of these lists, they use them to reach the agreement in a classical manner. Although, in general, the agreement is reached by using m+1 rounds (where m is the number of processes that can fail), if less than one-third of the processes fail it only needs one round to reach the agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.