Abstract

We consider a quantum particle subject to Ohmic dissipation, moving in a bichromatic quasiperiodic potential. In a periodic potential the particle undergoes a zero-temperature localization-delocalization transition as dissipation strength is decreased. We show that the delocalized phase is absent in the quasiperiodic case, even when the deviation from periodicity is infinitesimal. Using the renormalization group, we determine how the effective localization length depends on the dissipation. We show that {a similar problem can emerge in} the strong-coupling limit of a mobile impurity moving in a periodic lattice and immersed in a one-dimensional quantum gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.