Abstract

We study the diffusion of a quantum Brownian particle in a one-dimensional periodic potential with substitutional disorder. The particle is coupled to a dissipative environment, which induces a frictional force proportional to the velocity. The dynamics for arbitrary temperature is studied by using Feynman's influence-functional theory. We calculate the mobility to lowest order in the disorder and strength of the periodic potential. It is shown that for weak dissipation the linear mobility, which vanishes atT=0 due to localization effects, may exhibit a maximum and a subsequent minimum with increasing temperature. The relation to the diffusion of heavy particles in metals or doped semiconductors is briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.