Abstract
We prove a no-broadcasting theorem for the Holevo information of a noncommuting ensemble stating that no operation can generate a bipartite ensemble such that both copies have the same information as the original. We argue that upper bounds on the average information over both copies imply lower bounds on the quantum capacity required to send the ensemble without information loss. This is because a channel with zero quantum capacity has a unitary extension transferring at least as much information to its environment as it transfers to the output. For an ensemble being the time orbit of a pure state under a Hamiltonian evolution, we derive such a bound on the required quantum capacity in terms of properties of the input and output energy distribution. Moreover, we discuss relations between the broadcasting problem and entropy power inequalities. The broadcasting problem arises when a signal should be transmitted by a time-invariant device such that the outgoing signal has the same timing information as the incoming signal had. Based on previous results we argue that this establishes a link between quantum information theory and the theory of low power computing because the loss of timing information implies loss of free energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.