Abstract
A non-Hermitian operator with a real spectrum and a complete set of eigenvectors may serve as the Hamiltonian operator for a unitary quantum system provided that one makes an appropriate choice for the defining the inner product of physical Hilbert state. We study the consequences of such a choice for the representation of states in terms of projection operators and the geometry of the state space. This allows for a careful treatment of the quantum Brachistochrone problem and shows that it is indeed impossible to achieve faster unitary evolutions using PT-symmetric or other non-Hermitian Hamiltonians than those given by Hermitian Hamiltonians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.