Abstract
The spectacular promise of quantum computers is to enable new algorithms which render feasible problems requiring exorbitant resources for their solution on a classical computer. Quantum computation is based on transformation of quantum states. Quantum bits are two-level quantum systems, and as the simplest elementary building blocks for a quantum computer, they provide a convenient labeling for pairs of states and their physical realizations. This paper shows how a single quantum bit can be represented by the two lowest levels in a square well potential, and how simple perturbations of the potential can effect computational operations on the quantum bit. The controlling system is just another quantum system, and it couples to the one we are trying to do quantum computation. These problems lead to decoherence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.