Abstract

Ebola virus disease (EVD) causes outbreaks and epidemics in West Africa that persist until today. The envelope glycoprotein of Ebola virus (GP) consists of two subunits, GP1 and GP2, and plays a key role in anchoring or fusing the virus to the host cell in its active form on the virion surface. Toremifene (TOR) is a ligand that mainly acts as an estrogen receptor antagonist; however, a recent study showed a strong and efficient interaction with GP. In this context, we aimed to evaluate the energetic affinity features involved in the interaction between GP and toremifene by computer simulation techniques using the Molecular Fractionation Method with Conjugate Caps (MFCC) scheme and quantum-mechanical (QM) calculations, as well as missense mutations to assess protein stability. We identified ASP522, GLU100, TYR517, THR519, LEU186, LEU515 as the most attractive residues in the EBOV glycoprotein structure that form the binding pocket. We divided toremifene into three regions and evaluated that region i was more important than region iii and region ii for the formation of the TOR-GP1/GP2 complex, which might control the molecular remodeling process of TOR. The mutations that caused more destabilization were ARG134, LEU515, TYR517 and ARG559, while those that caused stabilization were GLU523 and ASP522. TYR517 is a critical residue for the binding of TOR, and is highly conserved among EBOV species. Our results may help to elucidate the mechanism of drug action on the GP protein of the Ebola virus and subsequently develop new pharmacological approaches against EVD. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call