Abstract
We provide a quantum benchmark for teleportation and storage of single-mode squeezed states with zero displacement and a completely unknown degree of squeezing along a given direction. For pure squeezed input states, a fidelity higher than 81.5% has to be attained in order to outperform any classical strategy based on an estimation of the unknown squeezing and repreparation of squeezed states. For squeezed thermal input states, we derive an upper and a lower bound on the classical average fidelity which tighten for moderate degree of mixedness. These results enable a critical discussion of recent experiments with squeezed light.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.