Abstract

Magnesium is an essential element because of its many beneficial properties and advantages over other metals, including its lack of risk to people’s health and its reasonable cost. However, Mg has several disadvantages, one of which is its high corrosion rate. This work analysed magnesium alloy characteristics and quantum behaviour, including band structure, molecular orbital, and corrosion behaviour in the presence of water. Magnesium was characterised by density functional theory software using CASTEP and Dmol3. Results showed no Mg band structure displays a conductive Fermi level of 8.85 eV. Curvature studies revealed that Mg has strong curvature and electron mobility. The density of state (DOS) of Mg-Al-Zn changes with Al and Zn alloy atoms, and the electron density increases to −7.5 eV compared with pure Mg. HOMO–LUMO analysis elucidated that Mg-Al-Zn* has a large gap (0.419 eV), leading to its stability and low chemical reactivity. This study analysed the properties of Mg and then examines the effect of corrosion on Mg alloys using DFT at different element positions. Corrosion analysis indicated that Mg-Al-Zn has the highest activation energy, implying that its corrosion is less likely than that of other alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call