Abstract

AbstractQuantum B‐algebras are partially ordered algebras characterizing the residuated structure of a quantale. Examples arise in algebraic logic, non‐commutative arithmetic, and quantum theory. A quantum B‐algebra with trivial partial order is equivalent to a group. The paper introduces a corresponding analogue of quantale modules. It is proved that every quantum B‐module admits an injective envelope which is a quantale module. The injective envelope is constructed explicitly as a completion, a multi‐poset version of the completion of Dedekind and MacNeille.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.