Abstract
Two protocols of quantum direct communication with authentication [Phys. Rev. A 73:042305, 2006] were recently proposed by Lee, Lim and Yang, based on the correlation of Greenberger-Horne-Zeilinger (GHZ) states. However, Zhang et al. showed that in the two protocols the authenticator Trent can eavesdrop the secret message by subtle strategies [Phys. Rev. A 75:026301, 2007]. In this paper, we propose two authenticated quantum direct communication (AQDC) protocols using Bell states. Users can identify each other by checking the correlation of Bell states. Alice can directly send a secret message to Bob without any previously shared secret using the remaining Bell states after authentication. The two proposed AQDC protocols are implemented under the condition that there is a quantum link between Alice and Bob and that there is no quantum link between Alice and Bob respectively, similar to the ones proposed by Lee, Lim and Yang [Phys. Rev. A 73:042305, 2006]. The proposed AQDC protocols not only fix the leaks in the AQDC protocols proposed by Lee, Lim and Yang, but also economize the quantum resource.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.