Abstract

Quantum atomistic simulations of crystalline silicon and germanium have been carried out by the path-integral Monte Carlo method. The interatomic interactions were modeled by Stillinger–Weber-type potentials, with parameters adequate to quantum simulations. Quantum zero-point motion together with anharmonicity of the interatomic potential led to a lattice expansion of 7 × 10−3 Å for both Si and Ge. Results for the equation-of-state (volume versus pressure) and for the thermal expansion coefficient agreed well with experimental results for both materials at T > 100 K and for hydrostatic pressures up to 100 kbar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.