Abstract

Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning. Due to their probabilistic nature, they can be used to capture prior information on the statistics of noise, smoothness of the functions, and training data uncertainty. However, their computational complexity quickly becomes intractable as the size of the data set grows. We propose a Hilbert-space approximation-based quantum algorithm for Gaussian process regression to overcome this limitation. Our method consists of a combination of classical basis function expansion with quantum computing techniques of quantum principal component analysis, conditional rotations, and Hadamard and tests. The quantum principal component analysis is used to estimate the eigenvalues, while the conditional rotations and the Hadamard and tests are employed to evaluate the posterior mean and variance of the Gaussian process. Our method provides polynomial computational complexity reduction over the classical method. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.