Abstract

We study approximation of embeddings between finite-dimensional L p spaces in the quantum model of computation. For the quantum query complexity of this problem matching (up to logarithmic factors) upper and lower bounds are obtained. The results show that for certain regions of the parameter domain quantum computation can essentially improve the rate of convergence of classical deterministic or randomized approximation, while there are other regions where the best possible rates coincide for all three settings. These results serve as a crucial building block for analyzing approximation in function spaces in a subsequent paper (Quantum approximation II. Sobolev Embeddings, J. Complexity, submitted).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.