Abstract
The Quantum Approximate Optimization Algorithm (QAOA) is a promising candidate algorithm for demonstrating quantum advantage in optimization using near-term quantum computers. However, QAOA has high requirements on gate fidelity due to the need to encode the objective function in the phase separating operator, requiring a large number of gates that potentially do not match the hardware connectivity. Using the MaxCut problem as the target, we demonstrate numerically that an easier way to implement an alternative phase operator can be used in lieu of the phase operator encoding the objective function, as long as the ground state is the same. We observe that if the ground state energy is not preserved, the approximation ratio obtained by QAOA with such phase separating operator is likely to decrease. Moreover, we show that a better alignment of the low energy subspace of the alternative operator leads to better performance. Leveraging these observations, we propose a sparsification strategy that reduces the resource requirements of QAOA. We also compare our sparsification strategy with some other classical graph sparsification methods, and demonstrate the efficacy of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.