Abstract

Quantum cognition emerged as an important discipline of mathematical psychology during the last two decades. Using abstract analogies between mental phenomena and the formal framework of physical quantum theory, quantum cognition demonstrated its ability to resolve several puzzles from cognitive psychology. Until now, quantum cognition essentially exploited ideas from projective (Hilbert space) geometry, such as quantum probability or quantum similarity. However, many powerful tools provided by physical quantum theory, e.g., symmetry groups have not been utilized in the field of quantum cognition research so far. Inspired by seminal work by Guerino Mazzola on the symmetries of tonal music, our study aims at elucidating and reconciling static and dynamic tonal attraction phenomena in music psychology within the quantum cognition framework. Based on the fundamental principles of octave equivalence, fifth similarity and transposition symmetry of tonal music that are reflected by the structure of the circle of fifths, we develop different wave function descriptions over this underlying tonal space. We present quantum models for static and dynamic tonal attraction and compare them with traditional computational models in musicology. Our approach replicates and also improves predictions based on symbolic models of music perception.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.