Abstract

The quantum anomalous Hall (QAH) effect-a macroscopic manifestation of chiral band topology at zero magnetic field-has been experimentally realized only by the magnetic doping of topological insulators1-3 and the delicate design of moiré heterostructures4-8. However, the seemingly simple bilayer graphene without magnetic doping or moiré engineering has long been predicted to host competing ordered states with QAH effects9-11. Here we explore states in bilayer graphene with a conductance of 2 e2 h-1 (where e is the electronic charge and h is Planck's constant) that not only survive down to anomalously small magnetic fields and up to temperatures of fivekelvin but also exhibit magnetic hysteresis. Together, the experimental signatures provide compelling evidence for orbital-magnetism-driven QAH behaviour that is tunable via electric and magnetic fields as well as carrier sign. The observed octet of QAH phases is distinct from previous observations owing to its peculiar ferrimagnetic and ferrielectric order that is characterized by quantized anomalous charge, spin, valley and spin-valley Hall behaviour9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.