Abstract

Topological Matter Quantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi2Se3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two groups have now observed quantum anomalous Hall effect in intrinsically magnetic materials (see the Perspective by Wakefield and Checkelsky). Serlin et al. did so in twisted bilayer graphene aligned to hexagonal boron nitride, where the effect enabled the switching of magnetization with tiny currents. In a complementary work, Deng et al. observed quantum anomalous Hall effect in the antiferromagnetic layered topological insulator MnBi2Te4. Science , this issue p. [900][1], p. [895][2]; see also p. [848][3] [1]: /lookup/doi/10.1126/science.aay5533 [2]: /lookup/doi/10.1126/science.aax8156 [3]: /lookup/doi/10.1126/science.aba5313

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.