Abstract

We propose an experimental scheme to realize the quantum anomalous Hall effect in an anisotropic square optical lattice which can be generated from available experimental setups of double-well lattices with minor modifications. A periodic gauge potential induced by atom-light interaction is introduced to give a Peierls phase for the nearest-neighbor site hopping. The quantized anomalous Hall conductivity is investigated by calculating the Chern number as well as the chiral gapless edge states of our system. Furthermore, we show in detail the feasability for its experimental detection through light Bragg scattering of the edge and bulk states with which one can determine the topological phase transition from usual insulating phase to quantum anomalous Hall phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call