Abstract

The quantum anomalous Hall (QAH) effect is rarely predicted in antiferromagnetic (AFM) materials. Here, by first-principles calculations, we propose that the monolayer of MoO is AFM and can be tuned to be a QAH insulator with a band gap of 50 meV. The MoO monolayer is a tetragonal lattice and we have checked its stability by the phonon spectrum and molecular dynamical simulation. It has a collinear AFM order with magnetic moments larger than $2\phantom{\rule{0.16em}{0ex}}{\ensuremath{\mu}}_{B}$ on each Mo atom. In the absence of strain, it is an AFM metal with a direct gap if spin-orbital coupling is considered. Tensile strain results in a metal-insulator phase transition, but it is still topologically trivial protected by an effective time-reversal symmetry. Shear strain breaks this symmetry and leads to the expected nontrivial electronic bands with Chern number $C=\ensuremath{-}1$. In addition, its N\'eel temperature could be larger than room temperature, providing another platform for the application of AFM materials in spintronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call