Abstract

Electron correlation and topology are two central threads of modern condensed matter physics. Semiconductor moiré materials provide a highly tuneable platform for studies of electron correlation1-12. Correlation-driven phenomena, including the Mott insulator2-5, generalized Wigner crystals2,6,9, stripe phases10 and continuous Mott transition11,12, have been demonstrated. However, non-trivial band topology has remained unclear. Here we report the observation of a quantum anomalous Hall effect in AB-stacked MoTe2 /WSe2 moiré heterobilayers. Unlike in the AA-stacked heterobilayers11, an out-of-plane electric field not only controls the bandwidth but also the band topology by intertwining moiré bands centred at different layers. At half band filling, corresponding to one particle per moiré unit cell, we observe quantized Hall resistance, h/e2 (with h and e denoting the Planck's constant and electron charge, respectively), and vanishing longitudinal resistance at zero magnetic field. The electric-field-induced topological phase transition from a Mott insulator to a quantum anomalous Hall insulator precedes an insulator-to-metal transition. Contrary to most known topological phase transitions13, it is not accompanied by a bulk charge gap closure. Our study paves the way for discoveryof emergent phenomena arising from the combined influence of strong correlation and topology in semiconductor moiré materials.

Highlights

  • Electron correlation and topology are two central threads of modern condensed matter physics

  • Unlike in the AAstacked structures 11, an out-of-plane electric field controls the bandwidth and the band topology by intertwining moiré bands centered at different highsymmetry stacking sites

  • The electric-field-induced topological phase transition from a Mott insulator to a quantum anomalous Hall (QAH) insulator precedes an insulator-to-metal transition; contrary to most known topological phase transitions 13, it is not accompanied by a bulk charge gap closure

Read more

Summary

Introduction

Electron correlation and topology are two central threads of modern condensed matter physics. We report the observation of a quantum anomalous Hall (QAH) effect in AB-stacked MoTe2/WSe2 moiré heterobilayers. At half band filling, corresponding to one particle per moiré unit cell, we observe quantized Hall resistance, hh/ee22 (with h and e denoting the Planck’s constant and electron charge, respectively), and vanishing longitudinal resistance at zero magnetic field.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call