Abstract

We demonstrate the use and benefits of quantum annealing approaches for the determination of equilibrated microstructures in shape memory alloys and other materials with long-range elastic interaction between coherent grains and their different martensite variants and phases. After a one dimensional illustration of the general approach, which requires to formulate the energy of the system in terms of an Ising Hamiltonian, we use distant dependent elastic interactions between grains to predict the variant selection for different transformation eigenstrains. The results and performance of the computations are compared to classical algorithms, demonstrating that the new approach can lead to a significant acceleration of the simulations. Beyond a discretization using simple cuboidal elements, also a direct representation of arbitrary microstructures is possible, allowing fast simulations with currently up to several thousand grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.