Abstract

Quantum annealing was recently found experimentally in a disordered spin-$\frac{1}{2}$ magnet to be more effective than its classical, thermal counterpart. We use the random two-dimensional Ising model as a test example and perform on it both classical and quantum (path-integral) Monte Carlo annealing. A systematic study of the dependence of the final residual energy on the annealing Monte Carlo time quantitatively demonstrates the superiority of quantum relative to classical annealing in this system. In order to determine the parameter regime for optimal efficiency of the quantum annealing procedure we explore a range of values of Trotter slice number P and temperature T. This identifies two different regimes of freezing with respect to efficiency of the algorithm, and leads to useful guidelines for the optimal choice of quantum annealing parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.