Abstract

In this review, after providing the basic physical concept behind quantum annealing (or adiabatic quantum computation), we present an overview of some recent theoretical as well as experimental developments pointing to the issues which are still debated. With a brief discussion on the fundamental ideas of continuous and discontinuous quantum phase transitions, we discuss the Kibble-Zurek scaling of defect generation following a ramping of a quantum many body system across a quantum critical point. In the process, we discuss associated models, both pure and disordered, and shed light on implementations and some recent applications of the quantum annealing protocols. Furthermore, we discuss the effect of environmental coupling on quantum annealing. Some possible ways to speed up the annealing protocol in closed systems are elaborated upon: we especially focus on the recipes to avoid discontinuous quantum phase transitions occurring in some models where energy gaps vanish exponentially with the system size. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call