Abstract

Dynamical symmetry breaking in an expanding nuclear system is investigated in a semi-classical and quantum framework by employing a collective transport model which is constructed to mimic the collective behavior of expanding systems. It is shown that the fluctuations in collective coordinates during the expansion are developed mainly by the enhancement of the initial fluctuations by the driving force, and that statistical and quantum fluctuations have similar consequences. It is pointed out that the quantal fluctuations may play an important role in the development of instabilities by reducing the time needed to break the symmetry, and the possible role of quantal fluctuations in spinodal decomposition of nuclei is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.