Abstract

A new analytical potential energy surface (PES) has been constructed for the Ar2H+ system from a dataset consisting of a large number of ab initio energies computed using the coupled-cluster singles, doubles and perturbative triples method and aug-cc-pVQZ basis set. The long-range interaction is added to the diatomic potentials using a standard long range expansion form to better describe the asymptotic regions. The vibrational states for the most stable structures of the Ar2H+ system have been calculated, and few low lying states are assigned to quantum numbers. Reactive scattering studies have been performed for the Ar + Ar'H+ → Ar' + ArH+ proton exchange reaction on the newly generated PES. Reaction probability, cross sections, and rate constants are calculated for the Ar + Ar'H+(v = 0, j = 0) collisions within 0.01 eV-0.6 eV of relative translational energy using exact quantum dynamical simulations as well as quasiclassical trajectory (QCT) calculations. The effect of vibrational excitation of the reactants is also explored for the reaction. State averaged rate constants are calculated for the proton exchange reaction at different temperatures using the QCT method. The mechanistic pathways for the reaction are understood by analyzing the quasiclassical trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.