Abstract
In the past few decades, researchers have extensively investigated the applications of quantum computation and quantum information to machine learning with remarkable results. This, in turn, has led to the emergence of quantum machine learning as a separate discipline, whose main goal is to transform standard machine learning algorithms into quantum algorithms which can be implemented on quantum computers. One further research programme has involved using quantum information to create new quantum-like algorithms for classical computers (Sergioli et al. in Int J Theor Phys 56(12):3880–3888, 2017; PLoS ONE 14:e0216224, 2019. https://doi.org/10.1371/journal.pone.0216224; Int J Quantum Inf 16(8):1840011, 2018a; Soft Comput 22(3):691–705, 2018b). This brief survey summarises and compares both approaches and also outlines the main motivations behind them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.