Abstract

Nowadays, multimedia applications are extensively utilized and communicated over Internet. Due to the use of public networks for communication, the multimedia data are prone to various security attacks. In the past few decades, image watermarking has been extensively utilized to handle this issue. Its main objective is to embed a watermark into a host multimedia data without affecting its presentation. However, the existing methods are not so effective against multiplicative attacks. Therefore, in this paper, a novel quantum-based image watermarking technique is proposed. It initially computes the dual-tree complex wavelet transform coefficients of an input cover image. The watermark image is then scrambled using Arnold transform. Thereafter, in the lower coefficient input the watermark image is embedded using quantum-based singular value decomposition (SVD). Finally, the covered image is obtained by applying the inverse dual-tree complex wavelet transform on the obtained coefficients. Comparative analyses are carried out by considering the proposed and the existing watermarking techniques. It has been found that the proposed technique outperforms existing watermarking techniques in terms of various performance metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.