Abstract

Fiber-optical networks are well established to accommodate global data traffic via coherent information transmission. The next generation of telecommunications will require the integration of quantum information into fiber-optic networks, e.g., for quantum key distribution. A promising and scalable route to enable quantum networking is encoding quantum information into the frequency of photons. While the cointegration of frequency-entangled photons with coherent information transmission is achieved via spectral multiplexing, more resource-efficient approaches are required. In this work, we introduce and experimentally demonstrate a transceiver concept that enables the transmission of coherent and frequency-entangled photons over a single-frequency channel. Our concept leverages the serrodyne technique via electro-optic phase modulation leading to very different dynamics for entangled and coherent photons. This enables temporal multiplexing of the respective signals. We demonstrate the preservation of entanglement over the channel in the presence of coherent light. Our approach reveals a strong potential for efficient bandwidth use in hybrid networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.