Abstract

We investigate pairwise quantum correlation as measured by the quantum discord as well as its classical counterpart in the thermodynamic limit of anisotropic XY spin-1/2 chains in a transverse magnetic field for both zero and finite temperatures. Analytical expressions for both classical and quantum correlations are obtained for spin pairs at any distance. In the case of zero temperature, it is shown that the quantum discord for spin pairs farther than second-neighbors is able to characterize a quantum phase transition, even though pairwise entanglement is absent for such distances. For finite temperatures, we show that quantum correlations can be increased with temperature in the presence of a magnetic field. Moreover, in the XX limit, the thermal quantum discord is found to be dominant over classical correlation while the opposite scenario takes place for the transverse field Ising model limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call