Abstract
We employ (1+1)-dimensional quantum cellular automata to study the evolution of entanglement and coherence near criticality in quantum systems that display nonequilibrium steady-state phase transitions. This construction permits direct access to the entire space-time structure of the underlying nonequilibrium dynamics, and allows for the analysis of unconventional correlations, such as entanglement in the time direction between the "present" and the "past." We show how the uniquely quantum part of these correlations-the coherence-can be isolated and that, close to criticality, its dynamics displays a universal power-law behavior on approach to stationarity. Focusing on quantum generalizations of classical nonequilibrium systems: the Domany-Kinzel cellular automaton and the Bagnoli-Boccara-Rechtman model, we estimate the universal critical exponents for both the entanglement and coherence. As these models belong to the one-dimensional directed percolation universality class, the latter provides a key new critical exponent, one that is unique to quantum systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.