Abstract
AbstractGain‐dissipative Ising machines (GIMs) are a type of quantum analog equipment that can rapidly determine the optimal solution for combinatorial optimization problems. When the noise intensity is significantly lower than the fixed point of the system, the performance of a GIM is not influenced by the fluctuation of the noise intensity. However, the noise in this study is limited to Gaussian white noise. The influence of prevalent colored noise on GIMs has not been researched. In this study, the influence of common‐colored noise on the performance of GIMs is numerically investigated. The results of a domain clustering dynamics analysis reveal that red noise can better suppress the generation of the noise‐induced irregular temporary domain. Furthermore, several prevalent MAXCUT problem topologies, including the Moebius ladder, random Moebius ladder, and 2D random lattice, are adopted as test benchmarks. The results reveal that GIMs influenced by white, blue, and violet noise perform better at low‐intensity noise condition. In contrast, pink and red noise‐injected GIMs demonstrate higher performances when applied to MAXCUT topologies with both ferromagnetic and antiferromagnetic connections under larger noise intensity conditions. This indicates that the noise dispersion can be used as an additional hyperparameter to optimize the performance of GIMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Advanced Theory and Simulations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.