Abstract

Photoinitiated triplet quantum amplified isomerizations (QAI) of substituted Dewar benzene derivatives in polymeric media are reported. The quantum efficiencies and the ultimate extents of reactant-to-product conversions increase significantly with the incorporation of appropriate co-sensitizers; compounds whose triplet energies are similar to or lower than that of the sensitizer and close to that of the reactant. These co-sensitizers serve to promote chain-propagating energy transfer processes and thereby increase the action sphere of photosensitization. Isomerization quantum yields increase, as predicted, with increasing concentrations of the reactants and the co-sensitizers. Chain amplifications as large as approximately 16 and extents of conversion that approach 100% have been achieved. Mechanistic schemes are proposed to account for the dynamics of the inherent energy transfer processes and provide a predictively useful model for the design of a new class of photoresponsive polymers based on changes in the refractive index of the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.