Abstract

In this article we develop quantum algorithms for learning and testing juntas, i.e. Boolean functions which depend only on an unknown set of k out of n input variables. Our aim is to develop efficient algorithms: (1) whose sample complexity has no dependence on n, the dimension of the domain the Boolean functions are defined over; (2) with no access to any classical or quantum membership (“black-box”) queries. Instead, our algorithms use only classical examples generated uniformly at random and fixed quantum superpositions of such classical examples; (3) which require only a few quantum examples but possibly many classical random examples (which are considered quite “cheap” relative to quantum examples). Our quantum algorithms are based on a subroutine FS which enables sampling according to the Fourier spectrum of f; the FS subroutine was used in earlier work of Bshouty and Jackson on quantum learning. Our results are as follows: (1) We give an algorithm for testing k-juntas to accuracy ε that uses O(k/ϵ) quantum examples. This improves on the number of examples used by the best known classical algorithm. (2) We establish the following lower bound: any FS-based k-junta testing algorithm requires $$\Omega(\sqrt{k})$$ queries. (3) We give an algorithm for learning k-juntas to accuracy ϵ that uses O(ϵ−1 k log k) quantum examples and O(2 k log(1/ϵ)) random examples. We show that this learning algorithm is close to optimal by giving a related lower bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.