Abstract

We apply recent work~\cite{ourotherpaper} on empirical estimates of quantum speedups to the practical task of community detection in complex networks. We design several quantum variants of a popular classical algorithm -- the \textit{Louvain algorithm} for community detection -- and first study their complexities in the usual way, before analysing their complexities empirically across a variety of artificial and real inputs. We find that this analysis yields insights not available to us via the asymptotic analysis, further emphasising the utility in such an empirical approach. In particular, we observe that a complicated quantum algorithm with a large asymptotic speedup might not be the fastest algorithm in practice, and that a simple quantum algorithm with a modest speedup might in fact be the one that performs best. Moreover, we repeatedly find that overheads such as those arising from the need to amplify the success probabilities of quantum sub-routines such as Grover search can nullify any speedup that might have been suggested by a theoretical worst- or expected-case analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.