Abstract
A viable approach for building large-scale quantum computers is to interlink small-scale quantum computers with a quantum network to create a larger distributed quantum computer. When designing quantum algorithms for such a distributed quantum computer, one can make use of the added parallelization and distribution abilities inherent in the system. An added difficulty to then overcome for distributed quantum computing is that a complex control system to orchestrate the various components is required. In this work, we aim to address these issues. We explicitly define what it means for a quantum algorithm to be distributed and then present various quantum algorithms that fit the definition. We discuss potential benefits and propose a high-level scheme for controlling the system. With this, we present our software framework called Interlin-q, a simulation platform that aims to simplify designing and verifying parallel and distributed quantum algorithms. We demonstrate Interlin-q by implementing some of the discussed algorithms using Interlin-q and layout future steps for developing Interlin-q into a control system for distributed quantum computers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.