Abstract

Operator size growth describes the scrambling of operators in quantum dynamics and stands out as an essential physical concept for characterizing quantum chaos. Important as it is, a scheme for direct measuring operator size on a quantum computer is still absent. Here, we propose a quantum algorithm for direct measuring the operator size and its distribution based on Bell measurement. The algorithm is verified with spin chains and meanwhile, the effects of Trotterization error and quantum noise are analyzed. It is revealed that saturation of operator size growth can be due to quantum chaos itself or be a consequence of quantum noises, which make a distinction between quantum integrable and chaotic systems difficulty on noisy quantum processors. Nevertheless, it is found that the error mitigation will effectively reduce the influence of noise, so as to restore the distinguishability of quantum chaotic systems. Our work provides a feasible protocol for investigating quantum chaos on noisy quantum computers by measuring operator size growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call