Abstract

We consider the recognition problem of the Dyck Language generalized for multiple types of brackets. We provide an algorithm with quantum query complexity \(O(\sqrt{n}(\log n)^{0.5k})\), where n is the length of input and k is the maximal nesting depth of brackets. Additionally, we show the lower bound for this problem which is \(\varOmega (\sqrt{n}c^{k})\) for some constant c.Interestingly, classical algorithms solving the Dyck Language for multiple types of brackets substantially differ from the algorithm solving the original Dyck language. At the same time, quantum algorithms for solving both kinds of the Dyck language are of similar nature and requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.