Abstract

Finance is one of the promising field for industrial application of quantum computing. In particular, quantum algorithms for calculation of risk measures such as the value at risk and the conditional value at risk of a credit portfolio have been proposed. In this paper, we focus on another problem in credit risk management, calculation of risk contributions, which quantify the concentration of the risk on subgroups in the portfolio. Based on the recent quantum algorithm for simultaneous estimation of multiple expected values, we propose the method for credit risk contribution calculation. We also evaluate the query complexity of the proposed method and see that it scales as widetilde{O} (sqrt{N_{mathrm{gr}}}/epsilon ) on the subgroup number N_{mathrm{gr}} and the accuracy ϵ, in contrast with the classical method with widetilde{O} (log(N_{mathrm{gr}})/epsilon^{2} ) complexity. This means that, for calculation of risk contributions of finely divided subgroups, the advantage of the quantum method is reduced compared with risk measure calculation for the entire portfolio. Nevertheless, the quantum method can be advantageous in high-accuracy calculation, and in fact yield less complexity than the classical method in some practically plausible setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.