Abstract

We present an intuitive and general analytical approximation estimating the energy of covalent single and double bonds between participating atoms in terms of their respective nuclear charges with just three parameters, [EAB ≈ a - bZAZB + c(ZA7/3 + ZB7/3) ]. The functional form of our expression models an alchemical atomic energy decomposition between participating atoms A and B. After calibration, reasonably accurate bond dissociation energy estimates are obtained for hydrogen-saturated diatomics composed of p-block elements coming from the same row 2 ≤ n ≤ 4 in the periodic table. Corresponding changes in bond dissociation energies due to substitution of atom B by C can be obtained via simple formulas. While being of different functional form and origin, our model is as simple and accurate as Pauling's well-known electronegativity model. Analysis indicates that the model's response in covalent bonding to variation in nuclear charge is near-linear, which is consistent with Hammett's equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.