Abstract

We derive new holonomicq-difference equations for the matrix coefficients of the products of intertwining operators for quantum affine algebra representations of levelk. We study the connection opertors between the solutions with different asymptotics and show that they are given by products of elliptic theta functions. We prove that the connection operators automatically provide elliptic solutions of Yang-Baxter equations in the “face” formulation for any type of Lie algebra $$\mathfrak{g}$$ and arbitrary finite-dimensional representations of . We conjecture that these solutions of the Yang-Baxter equations cover all elliptic solutions known in the contexts of IRF models of statistical mechanics. We also conjecture that in a special limit whenq→1 these solutions degenerate again into solutions with $$q' = \exp \left( {\frac{{2\pi i}}{{k + g}}} \right)$$ . We also study the simples examples of solutions of our holonomic difference equations associated to $$U_q (\widehat{\mathfrak{s}\mathfrak{l}(2)})$$ and find their expressions in terms of basic (orq−)-hypergeometric series. In the special case of spin −1/2 representations, we demonstrate that the connection matrix yields a famous Baxter solution of the Yang-Baxter equation corresponding to the solid-on-solid model of statistical mechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.