Abstract

Cavity optomechanical (COM) sensors, featuring efficient light–motion couplings, have been widely used for ultrasensitive measurements of various physical quantities ranging from displacements to accelerations or weak forces. Previous works, however, have mainly focused on reciprocal COM systems. Here, we propose how to further improve the performance of quantum COM sensors by breaking reciprocal symmetry in purely quantum regime. Specifically, we consider a spinning COM resonator and show that by selectively driving it in opposite directions, highly nonreciprocal optical squeezing can emerge, which in turn provides an efficient way to surpass the standard quantum limit which is otherwise unattainable for the corresponding reciprocal devices. Our work confirms that breaking reciprocal symmetry, already achieved in diverse systems well beyond spinning systems, can serve as a new strategy to further enhance the abilities of advanced quantum sensors, for applications ranging from testing fundamental physical laws to practical quantum metrology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.