Abstract

We consider the quantization procedure for the Gardner–Zakharov–Faddeev and Magri brackets using the fermionic representation for the KdV field. In both cases, the corresponding Hamiltonians are sums of two well-defined operators. Each operator is bilinear and diagonal with respect to either fermion or boson (current) creation/annihilation operators. As a result, the quantization procedure needs no space cutoff and can be performed on the entire axis. In this approach, solitonic states appear in the Hilbert space, and soliton parameters become quantized. We also demonstrate that the dispersionless KdV equation is uniquely and explicitly solvable in the quantum case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.