Abstract

The problem of quantizing a large-dynamic-range, possibly nonstationary signal after it has been transformed via the discrete Fourier transform (DFT) is investigated. It is demonstrated that, for purposes of d, the polar-form representation for these DFT coefficients is preferable to the Cartesian-form when fixed-information-rate quantization schemes are considered. A technique called spectral phase coding (SPC) is described for transforming the DFT coefficients into a bounded sequence \{\psi_{p}\} , where - \pi . In most cases, the terms \psi_{p} are uniformly distributed over this range. The results indicate that SPC is a robust suboptimum procedure for coding nonstationary or large-dynamic-range signals into digital form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.